
Openflexure Stage Documentation
Release 0.2.1

Richard Bowman

Jan 08, 2019

Contents:

1 Sangaboard hardware 3

2 Firmware 5

3 Getting started 7
3.1 Moving the stage . 7
3.2 Adjusting settings . 7
3.3 Using optional features . 8

4 openflexure_stage 9
4.1 openflexure_stage package . 9

5 Indices and tables 15

Python Module Index 17

i

ii

Openflexure Stage Documentation, Release 0.2.1

This module exposes the functions of the OpenFlexure Nano Motor Controller (AKA the “Sangaboard”) in a friendly
Python class. It allows the stage to be moved, as well as providing properties that allow it to be configured. Vari-
ous context managers and generator functions are provided to simplify opening/closing the hardware, and common
operations such as scanning through a list of points.

All of the functionality is accessed through the openflexure_stage.stage.OpenFlexureStage class,
which optionally includes a openflexure_stage.stage.LightSensor module if the firmware and hardware
are set up to include this and a openflexure_stage.stage.Endstops module if the firmware is compiled
with endstop support

Contents: 1

Openflexure Stage Documentation, Release 0.2.1

2 Contents:

CHAPTER 1

Sangaboard hardware

This module is designed to work with the “sangaboard” motor controller, based on an Arduino Nano and some Dar-
lington pair ICs. The PCB design is available on Github, and can be ordered through WaterScope or via Kit Space.

3

http://www.kitspace.org/

Openflexure Stage Documentation, Release 0.2.1

4 Chapter 1. Sangaboard hardware

CHAPTER 2

Firmware

You will need to make sure that the Arduino is running the correct firmware “sketch”. Assum-
ing you are familiar with the Arduino IDE you can download the repository from github (either down-
load a Zip file or clone the repository) and then look in the arduino_code folder for the sketch: ar-
duino_code/openflexure_nano_motor_controller/openflexure_nano_motor_controller.ino.

More information is available in the README.md file in the arduino_code folder.

Once you’ve uploaded that sketch to your Arduino, the firmware should be done - you can test it in the Serial Monitor
in the Arduino IDE, though make sure to set the baud rate to 115200 or it won’t work!

5

https://www.arduino.cc/en/Main/Software
https://github.com/rwb27/openflexure_nano_motor_controller/
https://github.com/rwb27/openflexure_nano_motor_controller/tree/master/arduino_code
https://github.com/rwb27/openflexure_nano_motor_controller/blob/master/arduino_code/README.md
https://github.com/rwb27/openflexure_nano_motor_controller/tree/master/arduino_code

Openflexure Stage Documentation, Release 0.2.1

6 Chapter 2. Firmware

CHAPTER 3

Getting started

To use the motor controller from Python, you will first need to install this module. It can be installed using pip in the
usual way, which will also require the packages that it depends on (future and pyserial). The simplest way to
use the module is this:

from openflexure_stage import OpenFlexureStage
with OpenFlexureStage() as stage:

stage.move_rel([100,0,0])
print(stage.position)
stage.move_rel([-100,0,0])

By default, it will use the first available serial port - if you are using a Raspberry Pi and you don’t have any other USB
serial devices connected, this will usually work. If not, you need to specify the serial port in the constructor:

OpenFlexureStage("/dev/ttyUSB0")

The name of the serial port will depend on your operating system - Linux typically assigns names that look like
/dev/ttyUSB0 while Windows will often give it a name like COM4.

Make sure you close the stage after you’re finished with it - the best way to do this is using a with block, but you can
also call close() manually if required.

3.1 Moving the stage

The most basic thing you are likely to want to do with the stage. This is done with move_rel() most of the time,
though it’s also possible to make absolute moves. The Sangaboard keeps track of position in firmware, and will return
its position if you query position.

3.2 Adjusting settings

There are a number of properties of your OpenFlexureStage object that can be used to change the way it works:

7

Openflexure Stage Documentation, Release 0.2.1

• backlash: software backlash compensation

• ramp_time: acceleration control

• step_time: define the maximum speed

3.3 Using optional features

If you compile support for it, you can add a light sensor to the stage, which is accessed as light_sensor. This
returns a LightSensor which allows you to control the gain (if possible) and read the light intensity.

If you compile support for it, you can add mechanical endstops, which are accessed as endstops. This returns
Endstops which allows you to home the axes, check endstop status, and control soft endstop position (if enabled).

8 Chapter 3. Getting started

CHAPTER 4

openflexure_stage

4.1 openflexure_stage package

4.1.1 Submodules

openflexure_stage.basic_serial_instrument module

This module defines a chopped-out class from nplab. It is a basic serial instrument class to simplify the pro-
cess of interfacing with equipment that talks on a serial port. The idea is that your instrument can subclass
BasicSerialInstrument and provide methods to control the hardware, which will mostly consist of self.query()
commands.

The QueriedProperty class is a convenient shorthand to create a property that is read and/or set with a single
serial query (i.e. a read followed by a write).

class openflexure_stage.basic_serial_instrument.BasicSerialInstrument(port=None,
**kwargs)

Bases: object

An instrument that communicates by sending strings back and forth over serial

This base class provides commonly-used mechanisms that support the use of serial instruments. Most interac-
tions with this class involve a call to the query method. This writes a message and returns the reply. This has
been hacked together from the nplab MessageBusInstrument and SerialInstrument classes.

Threading Notes

The message bus protocol includes a property, communications_lock. All commands that use the communica-
tions bus should be protected by this lock. It’s also permissible to use it to protect sequences of calls to the bus
that must be atomic (e.g. a multi-part exchange of messages). However, try not to hold it too long - or odd
things might happen if other threads are blocked for a long time. The lock is reentrant so there’s no issue with
acquiring it twice.

close()
Release the serial port

9

http://www.github.com/nanophotonics/nplab
http://www.github.com/nanophotonics/nplab

Openflexure Stage Documentation, Release 0.2.1

communications_lock
A lock object used to protect access to the communications bus

find_port()
Iterate through the available serial ports and query them to see if our instrument is there.

float_query(query_string, **kwargs)
Perform a query and return the result(s) as float(s) (see parsedQuery)

flush_input_buffer()
Make sure there’s nothing waiting to be read, and clear the buffer if there is.

ignore_echo = False

int_query(query_string, **kwargs)
Perform a query and return the result(s) as integer(s) (see parsedQuery)

open(port=None, quiet=True)
Open communications with the serial port.

If no port is specified, it will attempt to autodetect. If quiet=True then we don’t warn when ports are
opened multiple times.

parsed_query(query_string, response_string=’%d’, re_flags=0, parse_function=None, **kwargs)
Perform a query, returning a parsed form of the response.

First query the instrument with the given query string, then compare the response against a template.
The template may contain text and placeholders (e.g. %i and %f for integer and floating point values
respectively). Regular expressions are also allowed - each group is considered as one item to be parsed.
However, currently it’s not supported to use both % placeholders and regular expressions at the same time.

If placeholders %i, %f, etc. are used, the returned values are automatically converted to integer or floating
point, otherwise you must specify a parsing function (applied to all groups) or a list of parsing functions
(applied to each group in turn).

port_settings = {}

query(queryString, multiline=False, termination_line=None, timeout=None)
Write a string to the stage controller and return its response.

It will block until a response is received. The multiline and termination_line commands will keep reading
until a termination phrase is reached.

read_multiline(termination_line=None, timeout=None)
Read one line from the underlying bus. Must be overriden.

This should not need to be reimplemented unless there’s a more efficient way of reading multiple lines
than multiple calls to readline().

readline(timeout=None)
Read one line from the serial port.

termination_character = '\n'
All messages to or from the instrument end with this character.

termination_line = None
If multi-line responses are recieved, they must end with this string

test_communications()
Check if the device is available on the current port.

This should be overridden by subclasses. Assume the port has been successfully opened and the settings
are as defined by self.port_settings. Usually this function sends a command and checks for a known reply.

10 Chapter 4. openflexure_stage

Openflexure Stage Documentation, Release 0.2.1

write(query_string)
Write a string to the serial port

class openflexure_stage.basic_serial_instrument.OptionalModule(available, par-
ent=None, mod-
ule_type=’Undefined’,
model=’Generic’)

Bases: object

This allows a BasicSerialInstrument to have optional features.

OptionalModule is designed as a base class for interfacing with optional modules which may or may not be
included with the serial instrument, and can be added or removed at run-time.

available

confirm_available()
Check if module is available, no return, will raise exception if not available!

describe()
Consistently spaced desciption for listing modules

class openflexure_stage.basic_serial_instrument.QueriedProperty(get_cmd=None,
set_cmd=None,
vali-
date=None,
val-
range=None,
fdel=None,
doc=None, re-
sponse_string=None,
ack_writes=’no’)

Bases: object

A Property interface that reads and writes from the instrument on the bus.

This returns a property-like (i.e. a descriptor) object. You can use it in a class definition just like a property. The
property it creates will interact with the instrument over the communication bus to set and retrieve its value. It
uses calls to BasicSerialInstrument.parsed_query to set or get the value of the property.

QueriedProperty can be used to define properties on a BasicSerialInstrument or an OptionalModule (in which
case the BasicSerialInstrument.parsed_query method of the parent object will be used).

Arguments:

Get_cmd the string sent to the instrument to obtain the value

Set_cmd the string used to set the value (use {} or % placeholders)

Validate a list of allowable values

Valrange a maximum and minimum value

Fdel a function to call when it’s deleted

Doc the docstring

Response_string supply a % code (as you would for response_string in a
BasicSerialInstrument.parsed_query)

Ack_writes set to “readline” to discard a line of input after writing.

4.1. openflexure_stage package 11

Openflexure Stage Documentation, Release 0.2.1

openflexure_stage.stage module

OpenFlexure Stage module

This Python code deals with the computer (Raspberry Pi) side of communicating with the OpenFlexure Motor Con-
troller.

It is (c) Richard Bowman 2017 and released under GNU GPL v3

class openflexure_stage.stage.Endstops(available, parent=None, model=’min’)
Bases: openflexure_stage.basic_serial_instrument.OptionalModule

An optional module for use with endstops.

If endstops are installed in the firmware the openflexure_stage.OpenFlexureStage will gain an
optional module which is an instance of this class. It can be used to retrieve the type, state of the endstops, read
and write maximum positions, and home.

home(direction=’min’, axes=[’x’, ’y’, ’z’])
Home given/all axes in the given direction (min/max/both)

Parameters

• direction – one of {min,max,both}

• axes – list of axes e.g. [‘x’,’y’]

installed = []

maxima
Vector of maximum positions, homing to max endstops will measure this, can be set to a known value for
use with max only and min+soft endstops

status
Get endstops status as {-1,0,1} for {min,no,max} endstop triggered for each axis

test_mode = False
List of installed endstop types (min, max, soft)

class openflexure_stage.stage.LightSensor(available, parent=None, model=’Generic’)
Bases: openflexure_stage.basic_serial_instrument.OptionalModule

An optional module giving access to the light sensor.

If a light sensor is enabled in the motor controller’s firmware, then the openflexure_stage.
OpenFlexureStage will gain an optional module which is an instance of this class. It can be used to
access the light sensor (usually via the I2C bus).

gain
“Get or set the current gain value of the light sensor.

Valid gain values are defined in the valid_gains property, and should be floating-point numbers.

integration_time
Get or set the integration time of the light sensor in milliseconds.

intensity
Read the current intensity measured by the light sensor (arbitrary units).

valid_gains = None

class openflexure_stage.stage.OpenFlexureStage(*args, **kwargs)
Bases: openflexure_stage.basic_serial_instrument.BasicSerialInstrument

Class managing serial communications with an Openflexure Motor Controller

12 Chapter 4. openflexure_stage

Openflexure Stage Documentation, Release 0.2.1

The OpenFlexureStage class handles setting up communications with the stage, wraps the various serial com-
mands in Python methods, and provides iterators and context managers to simplify opening/closing the hardware
connection and some other tasks like conducting a linear scan.

Arguments to the constructor are passed to the constructor of openflexure_stage.
basic_serial_instrument.BasicSerialInstrument, most likely the only one necessary is
port which should be set to the serial port you will use to communicate with the motor controller.

This class can be used as a context manager, i.e. it’s encouraged to use it as:

with OpenFlexureStage() as stage:
stage.move_rel([1000,0,0])

In that case, the serial port will automatically be closed at the end of the block, even if an error occurs. Otherwise,
be sure to call the close() method to release the serial port.

axis_names = ('x', 'y', 'z')
The names of the stage’s axes. NB this also defines the number of axes.

backlash
The distance used for backlash compensation.

Software backlash compensation is enabled by setting this property to a value other than None. The value
can either be an array-like object (list, tuple, or numpy array) with one element for each axis, or a single
integer if all axes are the same.

The property will always return an array with the same length as the number of axes.

The backlash compensation algorithm is fairly basic - it ensures that we always approach a point from the
same direction. For each axis that’s moving, the direction of motion is compared with backlash. If
the direction is opposite, then the stage will overshoot by the amount in -backlash[i] and then move
back by backlash[i]. This is computed per-axis, so if some axes are moving in the same direction as
backlash, they won’t do two moves.

board = None
Once initialised, board is a string that identifies the firmware version.

focus_rel(z)
Move the stage in the Z direction by z micro steps.

list_modules()
Return a list of strings detailing optional modules.

Each module will correspond to a string of the form Module Name: Model

move_abs(final, **kwargs)
Make an absolute move to a position

NB the stage only accepts relative move commands, so this first queries the stage for its position, then
instructs it to make about relative move.

move_rel(displacement, axis=None, backlash=True)
Make a relative move, optionally correcting for backlash.

displacement: integer or array/list of 3 integers axis: None (for 3-axis moves) or one of ‘x’,’y’,’z’ backlash:
(default: True) whether to correct for backlash.

n_axes
The number of axes this stage has.

port_settings = {'baudrate': 115200, 'bytesize': 8, 'parity': 'N', 'stopbits': 1}
These are the settings for the stage’s serial port, and can usually be left as default.

4.1. openflexure_stage package 13

Openflexure Stage Documentation, Release 0.2.1

position
Get the position of the stage as a tuple of 3 integers.

print_help()
Print the stage’s built-in help message.

query(message, *args, **kwargs)
Send a message and read the response. See BasicSerialInstrument.query()

ramp_time
Get or set the acceleration time in microseconds.

The stage will accelerate/decelerate between stationary and maximum speed over ramp_time microsec-
onds. Zero means the stage runs at full speed initially, with no accleration control. Small moves may last
less than 2*ramp_time, in which case the acceleration will be the same, but the stage will never reach full
speed. It is saved to EEPROM on the Arduino, so it will be persistent even if the motor controller is turned
off.

release_motors()
De-energise the stepper motor coils

scan_linear(rel_positions, backlash=True, return_to_start=True)
Scan through a list of (relative) positions (generator fn)

rel_positions should be an nx3-element array (or list of 3 element arrays). Positions should be relative to
the starting position - not a list of relative moves.

backlash argument is passed to move_rel

if return_to_start is True (default) we return to the starting position after a successful scan. NB we always
attempt to return to the starting position if an exception occurs during the scan..

scan_z(dz, **kwargs)
Scan through a list of (relative) z positions (generator fn)

This function takes a 1D numpy array of Z positions, relative to the position at the start of the scan, and
converts it into an array of 3D positions with x=y=0. This, along with all the keyword arguments, is then
passed to scan_linear.

step_time
Get or set the minimum time between steps of the motors in microseconds.

The step time is 1000000/max speed in steps/second. It is saved to EEPROM on the Arduino, so it
will be persistent even if the motor controller is turned off.

supported_light_sensors = ['TSL2591', 'ADS1115']
This is a list of the supported light sensor module types.

test_mode
Get or set test mode

In test mode

• Stage may return extra information

• When homing, the stage will remain at the 0 position

• Position will not be reset when an endstop is hit

4.1.2 Module contents

14 Chapter 4. openflexure_stage

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

15

Openflexure Stage Documentation, Release 0.2.1

16 Chapter 5. Indices and tables

Python Module Index

o
openflexure_stage, 14
openflexure_stage.basic_serial_instrument,

9
openflexure_stage.stage, 12

17

Openflexure Stage Documentation, Release 0.2.1

18 Python Module Index

Index

A
available (openflexure_stage.basic_serial_instrument.OptionalModule

attribute), 11
axis_names (openflexure_stage.stage.OpenFlexureStage

attribute), 13

B
backlash (openflexure_stage.stage.OpenFlexureStage at-

tribute), 13
BasicSerialInstrument (class in openflex-

ure_stage.basic_serial_instrument), 9
board (openflexure_stage.stage.OpenFlexureStage

attribute), 13

C
close() (openflexure_stage.basic_serial_instrument.BasicSerialInstrument

method), 9
communications_lock (openflex-

ure_stage.basic_serial_instrument.BasicSerialInstrument
attribute), 9

confirm_available() (openflex-
ure_stage.basic_serial_instrument.OptionalModule
method), 11

D
describe() (openflexure_stage.basic_serial_instrument.OptionalModule

method), 11

E
Endstops (class in openflexure_stage.stage), 12

F
find_port() (openflexure_stage.basic_serial_instrument.BasicSerialInstrument

method), 10
float_query() (openflex-

ure_stage.basic_serial_instrument.BasicSerialInstrument
method), 10

flush_input_buffer() (openflex-
ure_stage.basic_serial_instrument.BasicSerialInstrument
method), 10

focus_rel() (openflexure_stage.stage.OpenFlexureStage
method), 13

G
gain (openflexure_stage.stage.LightSensor attribute), 12

H
home() (openflexure_stage.stage.Endstops method), 12

I
ignore_echo (openflexure_stage.basic_serial_instrument.BasicSerialInstrument

attribute), 10
installed (openflexure_stage.stage.Endstops attribute), 12
int_query() (openflexure_stage.basic_serial_instrument.BasicSerialInstrument

method), 10
integration_time (openflexure_stage.stage.LightSensor

attribute), 12
intensity (openflexure_stage.stage.LightSensor attribute),

12

L
LightSensor (class in openflexure_stage.stage), 12
list_modules() (openflex-

ure_stage.stage.OpenFlexureStage method),
13

M
maxima (openflexure_stage.stage.Endstops attribute), 12
move_abs() (openflexure_stage.stage.OpenFlexureStage

method), 13
move_rel() (openflexure_stage.stage.OpenFlexureStage

method), 13

N
n_axes (openflexure_stage.stage.OpenFlexureStage at-

tribute), 13

19

Openflexure Stage Documentation, Release 0.2.1

O
open() (openflexure_stage.basic_serial_instrument.BasicSerialInstrument

method), 10
openflexure_stage (module), 14
openflexure_stage.basic_serial_instrument (module), 9
openflexure_stage.stage (module), 12
OpenFlexureStage (class in openflexure_stage.stage), 12
OptionalModule (class in openflex-

ure_stage.basic_serial_instrument), 11

P
parsed_query() (openflex-

ure_stage.basic_serial_instrument.BasicSerialInstrument
method), 10

port_settings (openflex-
ure_stage.basic_serial_instrument.BasicSerialInstrument
attribute), 10

port_settings (openflexure_stage.stage.OpenFlexureStage
attribute), 13

position (openflexure_stage.stage.OpenFlexureStage at-
tribute), 13

print_help() (openflexure_stage.stage.OpenFlexureStage
method), 14

Q
QueriedProperty (class in openflex-

ure_stage.basic_serial_instrument), 11
query() (openflexure_stage.basic_serial_instrument.BasicSerialInstrument

method), 10
query() (openflexure_stage.stage.OpenFlexureStage

method), 14

R
ramp_time (openflexure_stage.stage.OpenFlexureStage

attribute), 14
read_multiline() (openflex-

ure_stage.basic_serial_instrument.BasicSerialInstrument
method), 10

readline() (openflexure_stage.basic_serial_instrument.BasicSerialInstrument
method), 10

release_motors() (openflex-
ure_stage.stage.OpenFlexureStage method),
14

S
scan_linear() (openflexure_stage.stage.OpenFlexureStage

method), 14
scan_z() (openflexure_stage.stage.OpenFlexureStage

method), 14
status (openflexure_stage.stage.Endstops attribute), 12
step_time (openflexure_stage.stage.OpenFlexureStage at-

tribute), 14

supported_light_sensors (openflex-
ure_stage.stage.OpenFlexureStage attribute),
14

T
termination_character (openflex-

ure_stage.basic_serial_instrument.BasicSerialInstrument
attribute), 10

termination_line (openflex-
ure_stage.basic_serial_instrument.BasicSerialInstrument
attribute), 10

test_communications() (openflex-
ure_stage.basic_serial_instrument.BasicSerialInstrument
method), 10

test_mode (openflexure_stage.stage.Endstops attribute),
12

test_mode (openflexure_stage.stage.OpenFlexureStage
attribute), 14

V
valid_gains (openflexure_stage.stage.LightSensor at-

tribute), 12

W
write() (openflexure_stage.basic_serial_instrument.BasicSerialInstrument

method), 10

20 Index

	Sangaboard hardware
	Firmware
	Getting started
	Moving the stage
	Adjusting settings
	Using optional features

	openflexure_stage
	openflexure_stage package

	Indices and tables
	Python Module Index

